TeapotBufferGeometry.js 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725
  1. /**
  2. * @author Eric Haines / http://erichaines.com/
  3. *
  4. * Tessellates the famous Utah teapot database by Martin Newell into triangles.
  5. *
  6. * Parameters: size = 50, segments = 10, bottom = true, lid = true, body = true,
  7. * fitLid = false, blinn = true
  8. *
  9. * size is a relative scale: I've scaled the teapot to fit vertically between -1 and 1.
  10. * Think of it as a "radius".
  11. * segments - number of line segments to subdivide each patch edge;
  12. * 1 is possible but gives degenerates, so two is the real minimum.
  13. * bottom - boolean, if true (default) then the bottom patches are added. Some consider
  14. * adding the bottom heresy, so set this to "false" to adhere to the One True Way.
  15. * lid - to remove the lid and look inside, set to true.
  16. * body - to remove the body and leave the lid, set this and "bottom" to false.
  17. * fitLid - the lid is a tad small in the original. This stretches it a bit so you can't
  18. * see the teapot's insides through the gap.
  19. * blinn - Jim Blinn scaled the original data vertically by dividing by about 1.3 to look
  20. * nicer. If you want to see the original teapot, similar to the real-world model, set
  21. * this to false. True by default.
  22. * See http://en.wikipedia.org/wiki/File:Original_Utah_Teapot.jpg for the original
  23. * real-world teapot (from http://en.wikipedia.org/wiki/Utah_teapot).
  24. *
  25. * Note that the bottom (the last four patches) is not flat - blame Frank Crow, not me.
  26. *
  27. * The teapot should normally be rendered as a double sided object, since for some
  28. * patches both sides can be seen, e.g., the gap around the lid and inside the spout.
  29. *
  30. * Segments 'n' determines the number of triangles output.
  31. * Total triangles = 32*2*n*n - 8*n [degenerates at the top and bottom cusps are deleted]
  32. *
  33. * size_factor # triangles
  34. * 1 56
  35. * 2 240
  36. * 3 552
  37. * 4 992
  38. *
  39. * 10 6320
  40. * 20 25440
  41. * 30 57360
  42. *
  43. * Code converted from my ancient SPD software, http://tog.acm.org/resources/SPD/
  44. * Created for the Udacity course "Interactive Rendering", http://bit.ly/ericity
  45. * Lesson: https://www.udacity.com/course/viewer#!/c-cs291/l-68866048/m-106482448
  46. * YouTube video on teapot history: https://www.youtube.com/watch?v=DxMfblPzFNc
  47. *
  48. * See https://en.wikipedia.org/wiki/Utah_teapot for the history of the teapot
  49. *
  50. */
  51. import {
  52. BufferAttribute,
  53. BufferGeometry,
  54. Matrix4,
  55. Vector3,
  56. Vector4
  57. } from "../../../build/three.module.js";
  58. var TeapotBufferGeometry = function ( size, segments, bottom, lid, body, fitLid, blinn ) {
  59. // 32 * 4 * 4 Bezier spline patches
  60. var teapotPatches = [
  61. /*rim*/
  62. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  63. 3, 16, 17, 18, 7, 19, 20, 21, 11, 22, 23, 24, 15, 25, 26, 27,
  64. 18, 28, 29, 30, 21, 31, 32, 33, 24, 34, 35, 36, 27, 37, 38, 39,
  65. 30, 40, 41, 0, 33, 42, 43, 4, 36, 44, 45, 8, 39, 46, 47, 12,
  66. /*body*/
  67. 12, 13, 14, 15, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
  68. 15, 25, 26, 27, 51, 60, 61, 62, 55, 63, 64, 65, 59, 66, 67, 68,
  69. 27, 37, 38, 39, 62, 69, 70, 71, 65, 72, 73, 74, 68, 75, 76, 77,
  70. 39, 46, 47, 12, 71, 78, 79, 48, 74, 80, 81, 52, 77, 82, 83, 56,
  71. 56, 57, 58, 59, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
  72. 59, 66, 67, 68, 87, 96, 97, 98, 91, 99, 100, 101, 95, 102, 103, 104,
  73. 68, 75, 76, 77, 98, 105, 106, 107, 101, 108, 109, 110, 104, 111, 112, 113,
  74. 77, 82, 83, 56, 107, 114, 115, 84, 110, 116, 117, 88, 113, 118, 119, 92,
  75. /*handle*/
  76. 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135,
  77. 123, 136, 137, 120, 127, 138, 139, 124, 131, 140, 141, 128, 135, 142, 143, 132,
  78. 132, 133, 134, 135, 144, 145, 146, 147, 148, 149, 150, 151, 68, 152, 153, 154,
  79. 135, 142, 143, 132, 147, 155, 156, 144, 151, 157, 158, 148, 154, 159, 160, 68,
  80. /*spout*/
  81. 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176,
  82. 164, 177, 178, 161, 168, 179, 180, 165, 172, 181, 182, 169, 176, 183, 184, 173,
  83. 173, 174, 175, 176, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196,
  84. 176, 183, 184, 173, 188, 197, 198, 185, 192, 199, 200, 189, 196, 201, 202, 193,
  85. /*lid*/
  86. 203, 203, 203, 203, 204, 205, 206, 207, 208, 208, 208, 208, 209, 210, 211, 212,
  87. 203, 203, 203, 203, 207, 213, 214, 215, 208, 208, 208, 208, 212, 216, 217, 218,
  88. 203, 203, 203, 203, 215, 219, 220, 221, 208, 208, 208, 208, 218, 222, 223, 224,
  89. 203, 203, 203, 203, 221, 225, 226, 204, 208, 208, 208, 208, 224, 227, 228, 209,
  90. 209, 210, 211, 212, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240,
  91. 212, 216, 217, 218, 232, 241, 242, 243, 236, 244, 245, 246, 240, 247, 248, 249,
  92. 218, 222, 223, 224, 243, 250, 251, 252, 246, 253, 254, 255, 249, 256, 257, 258,
  93. 224, 227, 228, 209, 252, 259, 260, 229, 255, 261, 262, 233, 258, 263, 264, 237,
  94. /*bottom*/
  95. 265, 265, 265, 265, 266, 267, 268, 269, 270, 271, 272, 273, 92, 119, 118, 113,
  96. 265, 265, 265, 265, 269, 274, 275, 276, 273, 277, 278, 279, 113, 112, 111, 104,
  97. 265, 265, 265, 265, 276, 280, 281, 282, 279, 283, 284, 285, 104, 103, 102, 95,
  98. 265, 265, 265, 265, 282, 286, 287, 266, 285, 288, 289, 270, 95, 94, 93, 92
  99. ];
  100. var teapotVertices = [
  101. 1.4, 0, 2.4,
  102. 1.4, - 0.784, 2.4,
  103. 0.784, - 1.4, 2.4,
  104. 0, - 1.4, 2.4,
  105. 1.3375, 0, 2.53125,
  106. 1.3375, - 0.749, 2.53125,
  107. 0.749, - 1.3375, 2.53125,
  108. 0, - 1.3375, 2.53125,
  109. 1.4375, 0, 2.53125,
  110. 1.4375, - 0.805, 2.53125,
  111. 0.805, - 1.4375, 2.53125,
  112. 0, - 1.4375, 2.53125,
  113. 1.5, 0, 2.4,
  114. 1.5, - 0.84, 2.4,
  115. 0.84, - 1.5, 2.4,
  116. 0, - 1.5, 2.4,
  117. - 0.784, - 1.4, 2.4,
  118. - 1.4, - 0.784, 2.4,
  119. - 1.4, 0, 2.4,
  120. - 0.749, - 1.3375, 2.53125,
  121. - 1.3375, - 0.749, 2.53125,
  122. - 1.3375, 0, 2.53125,
  123. - 0.805, - 1.4375, 2.53125,
  124. - 1.4375, - 0.805, 2.53125,
  125. - 1.4375, 0, 2.53125,
  126. - 0.84, - 1.5, 2.4,
  127. - 1.5, - 0.84, 2.4,
  128. - 1.5, 0, 2.4,
  129. - 1.4, 0.784, 2.4,
  130. - 0.784, 1.4, 2.4,
  131. 0, 1.4, 2.4,
  132. - 1.3375, 0.749, 2.53125,
  133. - 0.749, 1.3375, 2.53125,
  134. 0, 1.3375, 2.53125,
  135. - 1.4375, 0.805, 2.53125,
  136. - 0.805, 1.4375, 2.53125,
  137. 0, 1.4375, 2.53125,
  138. - 1.5, 0.84, 2.4,
  139. - 0.84, 1.5, 2.4,
  140. 0, 1.5, 2.4,
  141. 0.784, 1.4, 2.4,
  142. 1.4, 0.784, 2.4,
  143. 0.749, 1.3375, 2.53125,
  144. 1.3375, 0.749, 2.53125,
  145. 0.805, 1.4375, 2.53125,
  146. 1.4375, 0.805, 2.53125,
  147. 0.84, 1.5, 2.4,
  148. 1.5, 0.84, 2.4,
  149. 1.75, 0, 1.875,
  150. 1.75, - 0.98, 1.875,
  151. 0.98, - 1.75, 1.875,
  152. 0, - 1.75, 1.875,
  153. 2, 0, 1.35,
  154. 2, - 1.12, 1.35,
  155. 1.12, - 2, 1.35,
  156. 0, - 2, 1.35,
  157. 2, 0, 0.9,
  158. 2, - 1.12, 0.9,
  159. 1.12, - 2, 0.9,
  160. 0, - 2, 0.9,
  161. - 0.98, - 1.75, 1.875,
  162. - 1.75, - 0.98, 1.875,
  163. - 1.75, 0, 1.875,
  164. - 1.12, - 2, 1.35,
  165. - 2, - 1.12, 1.35,
  166. - 2, 0, 1.35,
  167. - 1.12, - 2, 0.9,
  168. - 2, - 1.12, 0.9,
  169. - 2, 0, 0.9,
  170. - 1.75, 0.98, 1.875,
  171. - 0.98, 1.75, 1.875,
  172. 0, 1.75, 1.875,
  173. - 2, 1.12, 1.35,
  174. - 1.12, 2, 1.35,
  175. 0, 2, 1.35,
  176. - 2, 1.12, 0.9,
  177. - 1.12, 2, 0.9,
  178. 0, 2, 0.9,
  179. 0.98, 1.75, 1.875,
  180. 1.75, 0.98, 1.875,
  181. 1.12, 2, 1.35,
  182. 2, 1.12, 1.35,
  183. 1.12, 2, 0.9,
  184. 2, 1.12, 0.9,
  185. 2, 0, 0.45,
  186. 2, - 1.12, 0.45,
  187. 1.12, - 2, 0.45,
  188. 0, - 2, 0.45,
  189. 1.5, 0, 0.225,
  190. 1.5, - 0.84, 0.225,
  191. 0.84, - 1.5, 0.225,
  192. 0, - 1.5, 0.225,
  193. 1.5, 0, 0.15,
  194. 1.5, - 0.84, 0.15,
  195. 0.84, - 1.5, 0.15,
  196. 0, - 1.5, 0.15,
  197. - 1.12, - 2, 0.45,
  198. - 2, - 1.12, 0.45,
  199. - 2, 0, 0.45,
  200. - 0.84, - 1.5, 0.225,
  201. - 1.5, - 0.84, 0.225,
  202. - 1.5, 0, 0.225,
  203. - 0.84, - 1.5, 0.15,
  204. - 1.5, - 0.84, 0.15,
  205. - 1.5, 0, 0.15,
  206. - 2, 1.12, 0.45,
  207. - 1.12, 2, 0.45,
  208. 0, 2, 0.45,
  209. - 1.5, 0.84, 0.225,
  210. - 0.84, 1.5, 0.225,
  211. 0, 1.5, 0.225,
  212. - 1.5, 0.84, 0.15,
  213. - 0.84, 1.5, 0.15,
  214. 0, 1.5, 0.15,
  215. 1.12, 2, 0.45,
  216. 2, 1.12, 0.45,
  217. 0.84, 1.5, 0.225,
  218. 1.5, 0.84, 0.225,
  219. 0.84, 1.5, 0.15,
  220. 1.5, 0.84, 0.15,
  221. - 1.6, 0, 2.025,
  222. - 1.6, - 0.3, 2.025,
  223. - 1.5, - 0.3, 2.25,
  224. - 1.5, 0, 2.25,
  225. - 2.3, 0, 2.025,
  226. - 2.3, - 0.3, 2.025,
  227. - 2.5, - 0.3, 2.25,
  228. - 2.5, 0, 2.25,
  229. - 2.7, 0, 2.025,
  230. - 2.7, - 0.3, 2.025,
  231. - 3, - 0.3, 2.25,
  232. - 3, 0, 2.25,
  233. - 2.7, 0, 1.8,
  234. - 2.7, - 0.3, 1.8,
  235. - 3, - 0.3, 1.8,
  236. - 3, 0, 1.8,
  237. - 1.5, 0.3, 2.25,
  238. - 1.6, 0.3, 2.025,
  239. - 2.5, 0.3, 2.25,
  240. - 2.3, 0.3, 2.025,
  241. - 3, 0.3, 2.25,
  242. - 2.7, 0.3, 2.025,
  243. - 3, 0.3, 1.8,
  244. - 2.7, 0.3, 1.8,
  245. - 2.7, 0, 1.575,
  246. - 2.7, - 0.3, 1.575,
  247. - 3, - 0.3, 1.35,
  248. - 3, 0, 1.35,
  249. - 2.5, 0, 1.125,
  250. - 2.5, - 0.3, 1.125,
  251. - 2.65, - 0.3, 0.9375,
  252. - 2.65, 0, 0.9375,
  253. - 2, - 0.3, 0.9,
  254. - 1.9, - 0.3, 0.6,
  255. - 1.9, 0, 0.6,
  256. - 3, 0.3, 1.35,
  257. - 2.7, 0.3, 1.575,
  258. - 2.65, 0.3, 0.9375,
  259. - 2.5, 0.3, 1.125,
  260. - 1.9, 0.3, 0.6,
  261. - 2, 0.3, 0.9,
  262. 1.7, 0, 1.425,
  263. 1.7, - 0.66, 1.425,
  264. 1.7, - 0.66, 0.6,
  265. 1.7, 0, 0.6,
  266. 2.6, 0, 1.425,
  267. 2.6, - 0.66, 1.425,
  268. 3.1, - 0.66, 0.825,
  269. 3.1, 0, 0.825,
  270. 2.3, 0, 2.1,
  271. 2.3, - 0.25, 2.1,
  272. 2.4, - 0.25, 2.025,
  273. 2.4, 0, 2.025,
  274. 2.7, 0, 2.4,
  275. 2.7, - 0.25, 2.4,
  276. 3.3, - 0.25, 2.4,
  277. 3.3, 0, 2.4,
  278. 1.7, 0.66, 0.6,
  279. 1.7, 0.66, 1.425,
  280. 3.1, 0.66, 0.825,
  281. 2.6, 0.66, 1.425,
  282. 2.4, 0.25, 2.025,
  283. 2.3, 0.25, 2.1,
  284. 3.3, 0.25, 2.4,
  285. 2.7, 0.25, 2.4,
  286. 2.8, 0, 2.475,
  287. 2.8, - 0.25, 2.475,
  288. 3.525, - 0.25, 2.49375,
  289. 3.525, 0, 2.49375,
  290. 2.9, 0, 2.475,
  291. 2.9, - 0.15, 2.475,
  292. 3.45, - 0.15, 2.5125,
  293. 3.45, 0, 2.5125,
  294. 2.8, 0, 2.4,
  295. 2.8, - 0.15, 2.4,
  296. 3.2, - 0.15, 2.4,
  297. 3.2, 0, 2.4,
  298. 3.525, 0.25, 2.49375,
  299. 2.8, 0.25, 2.475,
  300. 3.45, 0.15, 2.5125,
  301. 2.9, 0.15, 2.475,
  302. 3.2, 0.15, 2.4,
  303. 2.8, 0.15, 2.4,
  304. 0, 0, 3.15,
  305. 0.8, 0, 3.15,
  306. 0.8, - 0.45, 3.15,
  307. 0.45, - 0.8, 3.15,
  308. 0, - 0.8, 3.15,
  309. 0, 0, 2.85,
  310. 0.2, 0, 2.7,
  311. 0.2, - 0.112, 2.7,
  312. 0.112, - 0.2, 2.7,
  313. 0, - 0.2, 2.7,
  314. - 0.45, - 0.8, 3.15,
  315. - 0.8, - 0.45, 3.15,
  316. - 0.8, 0, 3.15,
  317. - 0.112, - 0.2, 2.7,
  318. - 0.2, - 0.112, 2.7,
  319. - 0.2, 0, 2.7,
  320. - 0.8, 0.45, 3.15,
  321. - 0.45, 0.8, 3.15,
  322. 0, 0.8, 3.15,
  323. - 0.2, 0.112, 2.7,
  324. - 0.112, 0.2, 2.7,
  325. 0, 0.2, 2.7,
  326. 0.45, 0.8, 3.15,
  327. 0.8, 0.45, 3.15,
  328. 0.112, 0.2, 2.7,
  329. 0.2, 0.112, 2.7,
  330. 0.4, 0, 2.55,
  331. 0.4, - 0.224, 2.55,
  332. 0.224, - 0.4, 2.55,
  333. 0, - 0.4, 2.55,
  334. 1.3, 0, 2.55,
  335. 1.3, - 0.728, 2.55,
  336. 0.728, - 1.3, 2.55,
  337. 0, - 1.3, 2.55,
  338. 1.3, 0, 2.4,
  339. 1.3, - 0.728, 2.4,
  340. 0.728, - 1.3, 2.4,
  341. 0, - 1.3, 2.4,
  342. - 0.224, - 0.4, 2.55,
  343. - 0.4, - 0.224, 2.55,
  344. - 0.4, 0, 2.55,
  345. - 0.728, - 1.3, 2.55,
  346. - 1.3, - 0.728, 2.55,
  347. - 1.3, 0, 2.55,
  348. - 0.728, - 1.3, 2.4,
  349. - 1.3, - 0.728, 2.4,
  350. - 1.3, 0, 2.4,
  351. - 0.4, 0.224, 2.55,
  352. - 0.224, 0.4, 2.55,
  353. 0, 0.4, 2.55,
  354. - 1.3, 0.728, 2.55,
  355. - 0.728, 1.3, 2.55,
  356. 0, 1.3, 2.55,
  357. - 1.3, 0.728, 2.4,
  358. - 0.728, 1.3, 2.4,
  359. 0, 1.3, 2.4,
  360. 0.224, 0.4, 2.55,
  361. 0.4, 0.224, 2.55,
  362. 0.728, 1.3, 2.55,
  363. 1.3, 0.728, 2.55,
  364. 0.728, 1.3, 2.4,
  365. 1.3, 0.728, 2.4,
  366. 0, 0, 0,
  367. 1.425, 0, 0,
  368. 1.425, 0.798, 0,
  369. 0.798, 1.425, 0,
  370. 0, 1.425, 0,
  371. 1.5, 0, 0.075,
  372. 1.5, 0.84, 0.075,
  373. 0.84, 1.5, 0.075,
  374. 0, 1.5, 0.075,
  375. - 0.798, 1.425, 0,
  376. - 1.425, 0.798, 0,
  377. - 1.425, 0, 0,
  378. - 0.84, 1.5, 0.075,
  379. - 1.5, 0.84, 0.075,
  380. - 1.5, 0, 0.075,
  381. - 1.425, - 0.798, 0,
  382. - 0.798, - 1.425, 0,
  383. 0, - 1.425, 0,
  384. - 1.5, - 0.84, 0.075,
  385. - 0.84, - 1.5, 0.075,
  386. 0, - 1.5, 0.075,
  387. 0.798, - 1.425, 0,
  388. 1.425, - 0.798, 0,
  389. 0.84, - 1.5, 0.075,
  390. 1.5, - 0.84, 0.075
  391. ];
  392. BufferGeometry.call( this );
  393. size = size || 50;
  394. // number of segments per patch
  395. segments = segments !== undefined ? Math.max( 2, Math.floor( segments ) || 10 ) : 10;
  396. // which parts should be visible
  397. bottom = bottom === undefined ? true : bottom;
  398. lid = lid === undefined ? true : lid;
  399. body = body === undefined ? true : body;
  400. // Should the lid be snug? It's not traditional, but we make it snug by default
  401. fitLid = fitLid === undefined ? true : fitLid;
  402. // Jim Blinn scaled the teapot down in size by about 1.3 for
  403. // some rendering tests. He liked the new proportions that he kept
  404. // the data in this form. The model was distributed with these new
  405. // proportions and became the norm. Trivia: comparing images of the
  406. // real teapot and the computer model, the ratio for the bowl of the
  407. // real teapot is more like 1.25, but since 1.3 is the traditional
  408. // value given, we use it here.
  409. var blinnScale = 1.3;
  410. blinn = blinn === undefined ? true : blinn;
  411. // scale the size to be the real scaling factor
  412. var maxHeight = 3.15 * ( blinn ? 1 : blinnScale );
  413. var maxHeight2 = maxHeight / 2;
  414. var trueSize = size / maxHeight2;
  415. // Number of elements depends on what is needed. Subtract degenerate
  416. // triangles at tip of bottom and lid out in advance.
  417. var numTriangles = bottom ? ( 8 * segments - 4 ) * segments : 0;
  418. numTriangles += lid ? ( 16 * segments - 4 ) * segments : 0;
  419. numTriangles += body ? 40 * segments * segments : 0;
  420. var indices = new Uint32Array( numTriangles * 3 );
  421. var numVertices = bottom ? 4 : 0;
  422. numVertices += lid ? 8 : 0;
  423. numVertices += body ? 20 : 0;
  424. numVertices *= ( segments + 1 ) * ( segments + 1 );
  425. var vertices = new Float32Array( numVertices * 3 );
  426. var normals = new Float32Array( numVertices * 3 );
  427. var uvs = new Float32Array( numVertices * 2 );
  428. // Bezier form
  429. var ms = new Matrix4();
  430. ms.set(
  431. - 1.0, 3.0, - 3.0, 1.0,
  432. 3.0, - 6.0, 3.0, 0.0,
  433. - 3.0, 3.0, 0.0, 0.0,
  434. 1.0, 0.0, 0.0, 0.0 );
  435. var g = [];
  436. var i, r, c;
  437. var sp = [];
  438. var tp = [];
  439. var dsp = [];
  440. var dtp = [];
  441. // M * G * M matrix, sort of see
  442. // http://www.cs.helsinki.fi/group/goa/mallinnus/curves/surfaces.html
  443. var mgm = [];
  444. var vert = [];
  445. var sdir = [];
  446. var tdir = [];
  447. var norm = new Vector3();
  448. var tcoord;
  449. var sstep, tstep;
  450. var vertPerRow;
  451. var s, t, sval, tval, p;
  452. var dsval = 0;
  453. var dtval = 0;
  454. var normOut = new Vector3();
  455. var v1, v2, v3, v4;
  456. var gmx = new Matrix4();
  457. var tmtx = new Matrix4();
  458. var vsp = new Vector4();
  459. var vtp = new Vector4();
  460. var vdsp = new Vector4();
  461. var vdtp = new Vector4();
  462. var vsdir = new Vector3();
  463. var vtdir = new Vector3();
  464. var mst = ms.clone();
  465. mst.transpose();
  466. // internal function: test if triangle has any matching vertices;
  467. // if so, don't save triangle, since it won't display anything.
  468. var notDegenerate = function ( vtx1, vtx2, vtx3 ) {
  469. // if any vertex matches, return false
  470. return ! ( ( ( vertices[ vtx1 * 3 ] === vertices[ vtx2 * 3 ] ) &&
  471. ( vertices[ vtx1 * 3 + 1 ] === vertices[ vtx2 * 3 + 1 ] ) &&
  472. ( vertices[ vtx1 * 3 + 2 ] === vertices[ vtx2 * 3 + 2 ] ) ) ||
  473. ( ( vertices[ vtx1 * 3 ] === vertices[ vtx3 * 3 ] ) &&
  474. ( vertices[ vtx1 * 3 + 1 ] === vertices[ vtx3 * 3 + 1 ] ) &&
  475. ( vertices[ vtx1 * 3 + 2 ] === vertices[ vtx3 * 3 + 2 ] ) ) ||
  476. ( ( vertices[ vtx2 * 3 ] === vertices[ vtx3 * 3 ] ) &&
  477. ( vertices[ vtx2 * 3 + 1 ] === vertices[ vtx3 * 3 + 1 ] ) &&
  478. ( vertices[ vtx2 * 3 + 2 ] === vertices[ vtx3 * 3 + 2 ] ) ) );
  479. };
  480. for ( i = 0; i < 3; i ++ ) {
  481. mgm[ i ] = new Matrix4();
  482. }
  483. var minPatches = body ? 0 : 20;
  484. var maxPatches = bottom ? 32 : 28;
  485. vertPerRow = segments + 1;
  486. var surfCount = 0;
  487. var vertCount = 0;
  488. var normCount = 0;
  489. var uvCount = 0;
  490. var indexCount = 0;
  491. for ( var surf = minPatches; surf < maxPatches; surf ++ ) {
  492. // lid is in the middle of the data, patches 20-27,
  493. // so ignore it for this part of the loop if the lid is not desired
  494. if ( lid || ( surf < 20 || surf >= 28 ) ) {
  495. // get M * G * M matrix for x,y,z
  496. for ( i = 0; i < 3; i ++ ) {
  497. // get control patches
  498. for ( r = 0; r < 4; r ++ ) {
  499. for ( c = 0; c < 4; c ++ ) {
  500. // transposed
  501. g[ c * 4 + r ] = teapotVertices[ teapotPatches[ surf * 16 + r * 4 + c ] * 3 + i ];
  502. // is the lid to be made larger, and is this a point on the lid
  503. // that is X or Y?
  504. if ( fitLid && ( surf >= 20 && surf < 28 ) && ( i !== 2 ) ) {
  505. // increase XY size by 7.7%, found empirically. I don't
  506. // increase Z so that the teapot will continue to fit in the
  507. // space -1 to 1 for Y (Y is up for the final model).
  508. g[ c * 4 + r ] *= 1.077;
  509. }
  510. // Blinn "fixed" the teapot by dividing Z by blinnScale, and that's the
  511. // data we now use. The original teapot is taller. Fix it:
  512. if ( ! blinn && ( i === 2 ) ) {
  513. g[ c * 4 + r ] *= blinnScale;
  514. }
  515. }
  516. }
  517. gmx.set( g[ 0 ], g[ 1 ], g[ 2 ], g[ 3 ], g[ 4 ], g[ 5 ], g[ 6 ], g[ 7 ], g[ 8 ], g[ 9 ], g[ 10 ], g[ 11 ], g[ 12 ], g[ 13 ], g[ 14 ], g[ 15 ] );
  518. tmtx.multiplyMatrices( gmx, ms );
  519. mgm[ i ].multiplyMatrices( mst, tmtx );
  520. }
  521. // step along, get points, and output
  522. for ( sstep = 0; sstep <= segments; sstep ++ ) {
  523. s = sstep / segments;
  524. for ( tstep = 0; tstep <= segments; tstep ++ ) {
  525. t = tstep / segments;
  526. // point from basis
  527. // get power vectors and their derivatives
  528. for ( p = 4, sval = tval = 1.0; p --; ) {
  529. sp[ p ] = sval;
  530. tp[ p ] = tval;
  531. sval *= s;
  532. tval *= t;
  533. if ( p === 3 ) {
  534. dsp[ p ] = dtp[ p ] = 0.0;
  535. dsval = dtval = 1.0;
  536. } else {
  537. dsp[ p ] = dsval * ( 3 - p );
  538. dtp[ p ] = dtval * ( 3 - p );
  539. dsval *= s;
  540. dtval *= t;
  541. }
  542. }
  543. vsp.fromArray( sp );
  544. vtp.fromArray( tp );
  545. vdsp.fromArray( dsp );
  546. vdtp.fromArray( dtp );
  547. // do for x,y,z
  548. for ( i = 0; i < 3; i ++ ) {
  549. // multiply power vectors times matrix to get value
  550. tcoord = vsp.clone();
  551. tcoord.applyMatrix4( mgm[ i ] );
  552. vert[ i ] = tcoord.dot( vtp );
  553. // get s and t tangent vectors
  554. tcoord = vdsp.clone();
  555. tcoord.applyMatrix4( mgm[ i ] );
  556. sdir[ i ] = tcoord.dot( vtp );
  557. tcoord = vsp.clone();
  558. tcoord.applyMatrix4( mgm[ i ] );
  559. tdir[ i ] = tcoord.dot( vdtp );
  560. }
  561. // find normal
  562. vsdir.fromArray( sdir );
  563. vtdir.fromArray( tdir );
  564. norm.crossVectors( vtdir, vsdir );
  565. norm.normalize();
  566. // if X and Z length is 0, at the cusp, so point the normal up or down, depending on patch number
  567. if ( vert[ 0 ] === 0 && vert[ 1 ] === 0 ) {
  568. // if above the middle of the teapot, normal points up, else down
  569. normOut.set( 0, vert[ 2 ] > maxHeight2 ? 1 : - 1, 0 );
  570. } else {
  571. // standard output: rotate on X axis
  572. normOut.set( norm.x, norm.z, - norm.y );
  573. }
  574. // store it all
  575. vertices[ vertCount ++ ] = trueSize * vert[ 0 ];
  576. vertices[ vertCount ++ ] = trueSize * ( vert[ 2 ] - maxHeight2 );
  577. vertices[ vertCount ++ ] = - trueSize * vert[ 1 ];
  578. normals[ normCount ++ ] = normOut.x;
  579. normals[ normCount ++ ] = normOut.y;
  580. normals[ normCount ++ ] = normOut.z;
  581. uvs[ uvCount ++ ] = 1 - t;
  582. uvs[ uvCount ++ ] = 1 - s;
  583. }
  584. }
  585. // save the faces
  586. for ( sstep = 0; sstep < segments; sstep ++ ) {
  587. for ( tstep = 0; tstep < segments; tstep ++ ) {
  588. v1 = surfCount * vertPerRow * vertPerRow + sstep * vertPerRow + tstep;
  589. v2 = v1 + 1;
  590. v3 = v2 + vertPerRow;
  591. v4 = v1 + vertPerRow;
  592. // Normals and UVs cannot be shared. Without clone(), you can see the consequences
  593. // of sharing if you call geometry.applyMatrix4( matrix ).
  594. if ( notDegenerate( v1, v2, v3 ) ) {
  595. indices[ indexCount ++ ] = v1;
  596. indices[ indexCount ++ ] = v2;
  597. indices[ indexCount ++ ] = v3;
  598. }
  599. if ( notDegenerate( v1, v3, v4 ) ) {
  600. indices[ indexCount ++ ] = v1;
  601. indices[ indexCount ++ ] = v3;
  602. indices[ indexCount ++ ] = v4;
  603. }
  604. }
  605. }
  606. // increment only if a surface was used
  607. surfCount ++;
  608. }
  609. }
  610. this.setIndex( new BufferAttribute( indices, 1 ) );
  611. this.setAttribute( 'position', new BufferAttribute( vertices, 3 ) );
  612. this.setAttribute( 'normal', new BufferAttribute( normals, 3 ) );
  613. this.setAttribute( 'uv', new BufferAttribute( uvs, 2 ) );
  614. this.computeBoundingSphere();
  615. };
  616. TeapotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
  617. TeapotBufferGeometry.prototype.constructor = TeapotBufferGeometry;
  618. export { TeapotBufferGeometry };